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CALCULATIONS IN IC ENGINES 
THREE-DIMENSIONAL UNSTEADY FLOW 

J. Y. TU AND L. FUCHS 
Department of Gasdynamics, The Royal Institute of Technology, 4 1 0 0  44, Stockholm. Sweden 

SUMMARY 
A new computational methodology with emphasis on using an overlapping grid technique and a multigrid 
method has been developed. The main feature of the present overlapping-grid system is of extended 
flexibility to deal with three-dimensional complex multicomponent geometries. The multigrid method is 
incorporated into this technique to accelerate the convergence of the numerical solution. The current scheme 
has been applied for computations of the laminar flows in the multicomponent configuration of internal 
combustion engines. The flow is governed by three-dimensional, time-dependent, incompressible 
Navier-Stokes equations with the continuity equation. A time-independent grid system is constructed for the 
moving boundary, i.e. the moving piston in the engine. This grid system is entirely different from others for 
the same problem in previous works. The performance of the present method has been validated by 
comparing the results with those from an equivalent, single-grid method and those from experiments. In 
addition, the flexibility and potential of the method has been demonstrated by calculating several cases 
which would be very difficult to be handled by other schemes. 
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1. INTRODUCTION 

Most of the numerical methods for simulating flows in internal combustion (IC) engines are based 
on the approach that a single global time-dependent grid system is generated for the whole 
computational domain.' Numerical procedures for calculating flow fields are often based on the 
SIMPLE a l g ~ r i t h m ~ . ~  or the vortex m e t h ~ d . ~  Such an approach has led to the need for 
significant simplifications for the engine geometry. The computational domain has to be redumd 
to the extent that numerical grid generation techniques can handle and the boundary conditions 
have to be specified due to such a simplification. Most of the previous flow calculations have been 
performed for two-dimensional (2D) representation of IC engines either in planar4 or in axisym- 
metrical Few three-dimensional (3D) calculations798 have been carried out due to the 
long computational times being required to perform the calculations of engine flows on a com- 
putational grid which is fine enough to adequately resolve the spatial variations. Thus, a need 
exists for both numerical techniques that can readily treat more realistic engine configurations 
and numerical procedures that are robust and efficient. The work reported here is to  develop 
a new computational methodology for IC engine flow calculations with emphasis on using 
overlapping-grid and multigrid (MG) methods. 
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A numerical grid generation technique involves mapping an irregular shape in the physical 
domain into a rectangular shape in the computational domain. Applications of this kind of 
technique to engine flow simulations have recently appeared in the literature.'. lo Although grid 
generation techniques do help solve problems involving flow fields with arbitrarily shaped 
boundaries, it is obvious that as the configuration becomes more complex, the grid generation 
itself becomes a more difficult task. Construction of a single-grid system with appropriate 
resolution and mesh spacing that covers the entire flow field would be rather difficult for 
complicated flows such as the flow in an engine where both the intake (or exhaust) port flow and 
the in-cylinder flow are simultaneously considered. 

An alternative way to remove these difficulties which has been employed in this study is to use 
an overlapping-grid technique by which a complex domain is divided into several geometrically 
simpler subdomains (or zones) which overlap each other. The grid in each zone is generated 
independently simply by using the existing grid generation schemes. The problem can be solved 
by computing alternatively a smaller problem in each zone and matching the local solutions by 
interpolation through the overlapping region. This approach has the potential to facilitate the use 
of different computational methods in different zones and also facilitate the use of parallel 
computational hardware. Moreover, the relative motion between the different parts of the 
computational domain can be accommodated by containing stationary parts in one (set of) 
zone(s) and moving parts in another (set of) zone(s). 

This technique differs from some others which are often called patched-grid and multiblock 
techniques. Those techniques also use the idea of dividing the domain into a set of subdomains or 
blocks. However, these blocks are joined precisely together along some common boundaries (see 
e.g. References 11 and 12). The overlapping-grid technique is more flexible for the rnulticompon- 
ent configuration since the boundaries between the neighbouring zones do not need to strictly 
match or even be similarly aligned; consequently, completely differently orientated grid systems 
can be mixed for those complex multicomponent geometries. This method has been applied to the 
solution of the full-potential equations for transonic flows'39 l4 and more recently applied to the 
computation of 2D incompressible15 and compressible16 flows. In this study, it has been applied 
to the calculations of the laminar flow governed by time-dependent, incompressible 3D 
Navier-Stokes equations in IC engine configurations. 

In the IC engine problem, there is a moving piston which acts as the moving boundary. In most 
previous works,3* '* 7-10 a time-dependent grid that expands and compresses with the motion of 
the piston has been employed. This approach needs more computational time for regenerating 
new grids and redistributing computed results at each time step during the solution procedure. 
Moreover, the accumulation of errors due to the interpolation from the solution at the last time 
step to the new grids may impair the accuracy of the unsteady solution. In our case, however, 
a time-independent grid system, in which completely new grids are not necessarily generated at 
each time step, is constructed by using a local computational region attached to the moving 
piston. Such a concept is more important for the overlapping-grid system used with the MG 
solver since the two techniques can be naturally combined in this case. 

The multigrid method is an iterative scheme developed originally for the solution of elliptic 
 equation^.'^ This scheme has been applied by Fuchs and Zhao" to the computation of 3D 
incompressible flows resulting in significant improvement in the convergence rate compared to 
the ordinary relaxation schemes. Here, this method has been incorporated into the present 
overlapping-grid technique to accelerate the convergence of solution. A correction schemei4* '' in 
the interzonal information exchange is introduced to ensure global mass balance in each zone. 
This scheme makes the fast convergence of solution in the implementation of the multigrid 
technique possible in the overlapping-grid system. 
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A case for which the flow can be calculated equally well using an equivalent, single-grid method 
is chosen in this paper to validate and assess the performance of the multigrid method on 
overlapping grids. The flow in a model geometry of an engine with a central intake port is 
calculated to verify the computer code by comparison with existing experimental results. The 
numerical results for several cases which are very difficult when managed by other schemes are 
presented to demonstrate the flexibility and potential of the present scheme. 

2. OVERLAPPING-GRID SYSTEM 

The basic idea of the overlapping-grid technique used here is to employ a separate body-fitted 
grid for each component in a multicomponent configuration and then to interface the grids in 
a manner which allows an efficient solution of the governing equations. Two grid topologies for 
the configuration of the IC engine with off-centre intake and exhaust ports are illustrated in 
Figure 1. Three local body-fitted grids are generated for one straight-duct intake port, one 
exhaust port and the cylindrical combustion chamber, respectively, as shown in Figure l(a). Two 
curved-duct ports are used in Figure l(b) instead of the straight-duct ports of Figure l(a). These 
local grids overlap where they meet, but are not required to collocate in the overlapping regions. 
When the domain may contain several solid bodies embedded in the computational domain, we 
flag the unused grid points in the zone so that the solid objects are excluded. On the edges of the 
unused points, the internal boundary points for the interfaces by interpolation between different 
zones are marked.*' In this case, only those boundary points in one local grid which lie in others 

Inlnlie porl 

Intake port 

(a) (b) 

Figure 1 .  A 3D view of the overlapping-grid system for engine configurations 
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are marked for the interfaces and no unused grid point is needed to be flagged since there is no 
body within the computational domain. It should be noted, however, that in order to construct 
a time-independent grid system for the moving-boundary problem, the moving piston is treated 
artificially as a variable solid body in the computational domain. An overlapping-grid system is 
first generated for the piston lying at bottom dead centre (BDC), where the size of the body 
disappears. When the piston moves towards top dead centre (TDC) or from TDC to BDC, the 
size of the body will vary with the motion of piston and those grid points lying in the body will be 
flagged as unused points which are excluded from the calculation. Care should be taken when the 
piston face does not exactly lie on a grid plane. A local computational region, i.e. a thinner cell 
layer as illustrated in Figure 1, is allowed to attach to the piston. The main advantage of this 
time-independent grid system is that no mesh regeneration is required. 

Compared to the single grid approach, the storage of numerical data for the overlapping grid 
system is more complicated. The data structure that we employ here is an extension of the 
multigrid data structure. ’*, All the dependent variables and the grid parameters are stored in 
one-dimensional arrays. A pointer system is defined so that each subgrid can be accessed directly 
by an integer array KGR(rn,n), where rn is the grid level in the MG cycle and n is the subgrid 
index. The position of the first variable entry of each subgrid is calculated according to grid levels 
and the number of subgrids. The data is organized by grid levels as in the case of the multigrid 
scheme. Within each grid level, the variables of the first subgrid are stored at the beginning, 
followed by those of the second subgrid, and so on. The data for internal boundary points in 
different subgrids are also stored in additional shorter one-dimensional arrays and are indepen- 
dently managed by an auxiliary pointer system. Our numerical experience shows that this type of 
data structure allows access to each subgrid independently and it is easy to deal with the 
interfaces among the different grids. This grid system allows also addition/deletion of locally 
refined subgrids.” 

3. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

3.1. Governing equations 

conservative, non-dimensional primitive variable formulation can be written as 
The equations describing three-dimensional, time-dependent, incompressible, laminar flows in 

continuity 
v*u=o, 

momentum 
au 1 
at Re 
- + v * (UU) = - VP + - vzu, 

where U = (p u, w )  is the velocity vector, with Cartesian components in the x-,  y -  and z-direction, 
respectively; t indicates the dimensionless time; P represents the pressure; Re is the Reynolds 
number based on a reference velolcity, U,, a reference length, D, and the kinematic viscosity, v. 

3.2. Boundary conditions 

There are potentially different types of boundaries, such as solid surfaces, inlets/outlets and 
‘internal surfaces’. No-slip condition is applied on solid surfaces and the velocity vector is 
assumed to be given at inlets/outlets. For the model engine problem, the velocity at the piston face 
is equal to the piston velocity and the inlet/outlet (uniformly distributed) velocity can be obtained 



UNSTEADY FLOW CALCULATIONS IN IC ENGINES 697 

from the overall mass balance by 

Ko==piston (nD2/4)/Ae 7 (3) 
where Spislon is the piston speed, D the cylinder diameter and A, the effective intake or exhaust 
area. 

At 'internal' boundaries, the velocity vector is specified (the pressure is not required since no 
boundary condition is needed on the pressure for solving the governing equations and for the 
semi-stagged grids that we use). The velocity vector at the 'internal' boundary points is computed 
by interpolation during the iterative process. A three-dimensional Lagrange interpolation scheme 
is. used and is implemented as a sequence of three one-dimensional interpolations. In this paper, 
a 4 x 4 x 4 interpolation stencil is used to ensure the second-order accuracy of the numerical 
approximations to the solution of the governing equations. l6 

It should be noted that this kind of interpolation scheme does not guarantee the global mass 
conservation before convergence. It has been pointed out by Fuchs15 that such an interface may 
prevent convergence and, in general, will slow down the convergence rate in the MG solver. Gu 
and FuchsI4 introduced a mass conservative correction through the density for the solution of the 
full-potential equation. For the incompressible case it has been found that the addition of 
a correction to the interpolated values could improve the convergence rate without affecting the 
final so l~ t ion . '~  

3.3. Initial conditions 

For the model engine problem, the flow is time-dependent. At t=O, the piston is stationary at 
the TDC of the cylinder and the flow everywhere is set to be at  rest. The flow inside the cylinder is 
driven by the motion of the piston away from the TDC, according to a simple harmonic motion, 
i.e. the motion of the piston follows a cosine wave while its velocity follows a sine wave. The 
position of the moving piston is given by 

(4) 

where L, is the clearance height of the cylinder and it is taken as LJL,  = 5; 2bnt refers to the crank 
angle 8, where b is the engine speed. Here the piston stroke is Ls/D = 1.0 and the cylinder bore is 

Ls 
2 

Z = L , + - [ 1  -cos(2bnt)], 

D =  1.0 

4. NUMERICAL PROCEDURE 

4.1.  Discretization 

The finite volume (FV) method is used to discretize the Navier-Stokes equations using 
Cartesian velocity components. By this approach one avoids the need for transformation of the 
co-ordinates and it makes the information exchange procedure among different grids simpler. We 
adopt a semi-staggered grid system in which all velocity components are defined at the cell vertex 
while the pressure (and, in fact, all scalar variables in the more complex flow simulations) is 
defined at the cell centre. The control volume for the continuity equation is the cell element itself. 
For the momentum equations, the control volume is formed by joining the cell centres surround- 
ing the point of calculations. For details of the discretization by using FV approximations, see e.g. 
References 21 and 22. The FV approximation as implemented by us is given shortly in the 
following. 
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Figure 2. Illustration of main and subcontrol volumes in a physical space 

We consider an arbitrary FV element for the momentum equations in the physical space as 
illustrated in Figure 2. A cell marked by the black solid lines indicates the main control volume 
which encloses a computational point in the cell centre. The dashed volume, called a subcontrol 
volume, encloses the central point of one surface of the main control volume. The following 
notations are used to discretize the first- and second-order derivatives. S,' indicates the projected 
area of the surface 1 of main control volume in the e-direction; SE indicates the projected area of 
the surface r of the subcontrol volume I in the e-direction; Ol and aIr express the function values in 
the surface 1 of the main control volume and in the surface r of the subcontrol volume I, 
respectively; V and & are the volumes of the main and the subcontrol volume 1, respectively; 
I, r-1,  2, .  . ., 6; e = l ,  2, 3, (x, y, z). 

The first-order derivatives can be approximated as 

and the approximating Laplace's operator can be evaluated by 

As seen, no co-ordinate and equation transformation is required and only the grid parameters 
such as areas and volumes of the cell have to be calculated in an efficient way.23 It should be 
noted that a wedge-shaped control volume for the continuity equation and a control volume 
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(a) for the continuity equation (b) for momentum equations 

Figure 3. Illustrations of irregular control volume 

which consists of multiple wedge-shaped volumes for momentum equations, as illustrated in 
Figure 3, are used for cases of degeneration (as near the axis of cylindrical co-ordinates). 

The main advantage of using a semi-staggered grid system is that, on the one hand, it simplifies 
the treatment of cells of general shapes (collocation of velocity components). On the other hand, 
one does not have to specify boundary conditions on the pressure. The collocation of velocity 
components requires an additional 'dissipation' term into the continuity equation, to eliminate 
oscillation ('odd+ven decoupling') in the pressure. This additional term is formally of fourth- 
order accuracy and, therefore, does not alter the total accuracy of the computed results. 

The discretization formulation for the governing equations is implicit in time and the MG 
procedure is used to accelerate the convergence of the solution in each time step. The central 
difference approximation in equation (5)  gives rise to high-frequency oscillations of the numerical 
solution in the case of high Reynolds number. The numerical damping used here is defined by 
a fourth-order difference operator which is similar to the scheme proposed by J a m e ~ o n ~ ~  for 
inviscid flows and applied to the viscous 

4.2. Solution procedure 

The multigrid procedure is.used for the fast solution of discretized equations. More details of 
descriptions of MG methods for systems of equations and time-dependent problems (real- 
time-dependent or time-marching scheme towards steady state) can be found in References 18,22, 
26 and 27. Only those aspects that are directly relevant to the implementation on the overlapping- 
grid system will be described here. 

The basic Schwarz algorithm implies that the discrete equations in each zone are solved before 
updating all the internal boundaries and the procedure is repeated until convergence is achieved. 
Previous numerical experiences2'. 28 indicate that such an iterative process results in slow 
convergence and is sensitive to the extent of the overlap. Here, the updating procedure is an 
integral part of the MG cycle. 

The solution procedure at each time step is as follows. A symmetrical line relaxation technique 
is used to smooth the three momentum equations. Then the continuity equation is relaxed 
pointwise, by updating all the dependent variables at each computational cell. The updating 
method is essentially close to the one described by Fuchs and Zhao." Here, the correction for the 
velocity components and the pressure is carried out only at a single point (i.e. the one that is being 
relaxed). After minimal smoothing of the errors, the information is transferred among the grids by 
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interpolation at the points belonging to the internal boundaries. The interpolated values are 
corrected to ensure the total mass balance on each grid. The same relaxation procedure is 
performed successively in the other zones. Then the problems in all the zones are transferred to 
coarser grids using the FAS scheme17 for the dependent variables and using the volume averaging 
restriction operator for the residuals. The corrections on the coarse grids are interpolated linearly 
to the fine grids. The iterations are carried out by a V-cycle MG process until a convergence 
solution is achieved. 

In the model engine problem, the time steps are chosen so that the piston moves less than one 
mesh spacing on the finest grid in the piston-moving direction. This choice of the time step can be 
guaranteed independently of the spatial spacing since we use an implicit algorithm to march in 
time. 

5.  RESULTS 

5.1. A 90" circular bend 

A case for which the flow can be calculated by an equivalent, single-grid method is chosen to 
validate and assess the performance of the method developed above. The geometry consists of 
a 90" pipe bend with a mean radius of curvature of 3.2 times the diameter of the pipe, and inlet 
and outlet extensions of 2.0 and 3.2 times the diameter, respectively, (see Figure 4). The reason for 
choosing this case is that there is a large amount of experimental and numerical data for reference. 
Fully developed flow profile is given at the inlet and a zero-gradient condition is applied to the 
outlet. The Reynolds number, based on the maximum inlet velocity and the width at the inlet, 
is 150. 

For reference purposes, the grid is artificially divided into three sections. On each of these, three 
grid levels are defined. The finest grids are 9 x 26 x 17 for the inlet segment, 9 x 26 x 29 for the 
bend and 9 x 26 x 21 for the outlet segment. Figure 4 depicts the overlapping grids and some of 
the computed results. The secondary flows at 30°, 60" and at a distance of one diameter 
downstream from the end of the bend are shown in Figures 4(ab4(c). Note that the scale factor of 
velocity vectors in Figures 4(at4(c) is 200 times larger than in Figure 4(d). From these figures it 
can be seen that the centre of the symmetrical pair of vortices caused by the centrifugal force 
moves from the inside to the outside of the pipe as the turning angle increases. It is also observed 
that the vortex motion weakens as it leaves the bend. In Figure qd), the velocity distribution in 
the mid-plane is presented. These results show a good agreement with the previously published 
numericalz9 and experimenta130 data. 

In addition, a calculation is done using a single-grid system that is, in all other respects, 
equivalent to the method described in this report. The number of computational cells used in this 
calculation is 9 x 26 x 65, which is close to the total number of all the three finest grids used in the 
overlapping-grid system. The MG procedure is also employed to this single-grid system by 
constructing a sequence of coarser grids. In this way, the performance of the overlapping grid 
scheme can be assessed by comparing single-grid calculations. 

For the purpose of comparison, we freeze the pressure field and relax the momentum equations 
only. Figure 5 shows the convergence histories of the different calculations as function of work 
units (WU). One WU is the amount of work required to perform one sweep of symmetrical line 
relaxation on the finest grids. The work units required by the implementation of the interfaces on 
the overlapping-grid system are estimated by recording the required CPU time. It can be 
concluded that the current scheme is far more efficient than the single-grid scheme. The 
information exchange among the zones leads to some deteriorated convergence rate. The 
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Figure 5. Convergence histories of the different schemes: ~ , MG in the single-grid system; . . . . . . MG in the 
overlapping-grid system; . . . . . , Single grid scheme in the single-grid system 

overlapping-grid system is, however, far more flexible to deal with the complex geometry than 
a global single-grid system. 

5.2. A chamber with a central intake port 

The flow field in a model engine whose configuration has been used in the experimental 
investigation of Ekchian and Hoult3' is calculated here. The experimental observations and 
published numerical computations are used for a comparison to verify the current computer code 
for the model engine problem. For all the engine problems studied in this paper, the Reynolds 
number based on the maximum piston velocity and the chamber diameter, is taken to be 
Re= 150. The overlapping-grid system for this case is similar to that of Figure l(a), where the two 
ducts are replaced by a single duct aligned with the central line of the cylinder. The finest grids 
used are 13 x 26 x 17 for the intake port and 13 x 26 x 29 for the chamber, respectively. A fixed 
valve, 0 4 5  times the diameter of the cylinder, is located at the distance 0.12 times the stroke away 
from the head of the chamber. In the numerical calculation, it is assumed that the valve is fully 
opened during the entire intake process. 

Figure 6(a) shows a three-dimensional velocity vector plot of the intake stroke flow at an 
equivalent crank angle (CA) of 8=90". The interaction of the intake jet with the wall produces 
large-scale rotating flow patterns within the cylinder volume. The upper corner of the chamber 
contains a second smaller vortex rotating in the opposite direction. The flow around the valve 
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Figure 6. Velocity vector plots at an equivalent crank angle 0=90" for the case with a central intake port 

periphery is found to be non-uniform. The computed flow structure is graphically similar to the 
experimental pictures31 and recent c a l c ~ l a t i o n s ~ ~  using a finite element method. The flow in the 
diameter planes, which is entirely radial, is revealed in Figures 6(b)-6(d). It can be seen from 
the current result that the full-geometry calculation gives rise to complete axisymmetry (as is 
the geometry itself). Previous axisymmetrical solutions for this type of model e ~ ~ g i n e ~ - ~  are thus 
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motivated. It should be noted, however, that the assumption of uniform flow into the combustion 
chamber through the valve curtain area for the inlet boundary condition in the numerical 
simulations of Wakisaka et aL7 cannot be confirmed in the present calculations. 

5.3. A chamber with an of-centre intake and an of-centre exhaust port 

We have examined the flow structure produced by an intake port aligned with the centre line of 
the chamber. Most configurations of real engines, however, are not axisymmetrical. A case for 
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Figure 7. Velocity vector plots at an equivalent crank angle 0=9W for the case with an off-centre intake port 
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which a combustion chamber is equipped with an off-centre intake and an off-centre exhaust port 
is computed. The overlapping-grid system used for this case is illustrated in Figure l(a). The 
intake and the exhaust stubs are aligned with the mid-plane of the cylinder. There are three grid 
levels in each component of the grid system for the MG process. The finest grids are 13 x 26 x 29 
for the cylinder chamber; 9 x 26 x 17 for both the intake and the exhaust ports. During the 
intake/exhaust stroke process the exhaust/intake port is closed. Figures 7-9 depict results of 
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Figure 8. Velocity vector plots at an equivalent crank angle O =  180" for the case with an off-centre intake port 
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Figure 9. Velocity vector plots at an equivalent crank angle 0=270" for the case with an off-centre exhaust port 
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a simulation of the flow during the intake and the exhaust stroke process, shown at different 
equivalent crank angles of 8=90", 180" and 270", respectively. 

During the first half of the intake stroke (Figure 7), a primary vortex is formed near the head of 
the chamber on the y-z plane. The incoming jet forms two counter-rotating toroidal vortices 
located at the two sides of the cylinder axis on the x-z plane. The most important difference 
between the two flow fields induced by an off-centre intake port and a central intake port is that 
a swirling flow about the cylinder axis in the transverse plane, as illustrated in Figure 7(e), is 
created due to the off-centre position of the intake port, compared to the radial flow as shown in 
Figure qd). 

Throughout induction, i.e. up to the crank angle of 8 = 180", the primary vortex in the y-z plane 
expands in size and is confined to the upper half of the cylinder volume. In the x-z plane the 
centres of two counter-rotating toroidal vortices move closer to the cylinder axis and the flow 
between the wall and the cylinder axis in the upper half of the cylinder volume becomes stronger. 
Comparison of Figure 8(c) with 8(e) indicates that the plane-symmetrical swirling flows near the 
head and in the middle of the chamber are in the opposite directions. It is interesting to note that 
the flow in the transverse plane at z=O-2 is more complex as illustrated in Figure 8(d), showing 
two small counter-rotating vortices near the intake port. 

During the exhaust stroke process, the exhaust port is assumed to be fully opened. When the 
piston moves away from BDC, most of the flow changes direction towards the head of the 
chamber (see Figure 9). This flow pattern is qualitatively similar to the experimental observations 
of Morse et It should also be noted that the primary vortex in the y-z plane does not 
disappear during the exhaust stroke process at the crank angle of 8=270". The two small 
vortices near the intake port in the transverse plane still remain though they become weaker 
[Figure 9(d)]. 

5.4. A chamber with multiple ports 

To further confirm the capability of our technique, the flow field in a combustion chamber with 
multiple intake and exhaust ports is calculated. Figure 10 illustrates an example for a chamber 
with two intake and two exhaust ports. The computed result plotted in terms of the velocity 
vectors at the full induction phase, is presented in Figure 11. A comparison with the flow field 

Y 

Figure 10. Illustration of a chamber with two intake or exhaust ports 
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Figure 11.  Velocity vector plots at an equivalent crank angle 8= 180" for the case with two intake ports 

induced by one intake port as illustrated in Figure 9, reveals that the flow structure within the 
chamber with multiple intake ports becomes more complex. 

5.5. A chamber with a curved-duct intake and a curued-duct exhaust port 

A more practical configuration is a chamber fitted with an off-centre curved-duct intake and an 
off-centre curved-duct exhaust port. In order to increase the effect of swirl within the combustion 
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Y 

Exhaust port 
(Cuived-ducl) 

I 

Figure 12. Illustration of an arrangement between the curved-duct ports and the cylinder chamber 

chamber, an arrangement between the curved-duct ports and the combustion chamber is made 
similarly to that in the experimental investigation of Hirotomi et ~ 2 1 . ~ ~  as illustrated in Figure 12. 
Swirl is used to speed up the combustion process and to promote more rapid mixing between the 
induced air charge and the injected fuel. In this way, the swirl is a very important characteristic in 
the design process for the IC engines. With this type of induction port and arrangement, swirl 
within the combustion chamber can be created by bringing the flow into the cylinder with an 
initial angular momentum. The overlapping-grid system is illustrated in Figure l(a), where the 
only difference from the present case is due to the different location of the curved-duct ports with 
respect to the cylinder axis. Through this case, one may recognize that the effect of geometrical 
factors on the flow structure in the IC engine may be examined more economically by the present 
numerical means than the experimental effort. 

The grids used for this case are composed of three-level grids for each component in which the 
finest grids are 13 x 26 x 29 for the chamber and 9 x 26 x 29 for both the intake and the exhaust 
ports. Figures 13-1 5 depict instantaneous velocity vectors at different equivalent crank angles of 
8 = 90", 180" and 270°, respectively. 

At the crank angle of 0=9W (see Figure 14), the primary vortices near the head of the chamber 
are less evident than those revealed in Figure 7. This is because the axial flow induced by the 
curved-duct port into the cylinder is weaker than that induced by the straight-duct port. It is 
interesting to note that a tangential flow with respect to the cylinder axis from the outlet of the 
curved-duct intake port, as shown in Figure 13(c), is created so that a strong swirling flow near the 
head of the cylinder is formed as revealed in Figure 13(d). A complex flow showing a small vortex 
near the inlet of the cylinder is also found. Figure 13(e) depicts that a nearly plane-symmetrical 
swirling flow close to the piston is produced by the interaction of the intake jet flow with the 
piston face. 

Until the full induction, the large-scale rotating flow patterns within the cylinder volume are 
clearly evident, as exhibited in Figures 14(a) and 14(b). Several small vortices revealing a complex 
flow in the diameter plane are illustrated in Figures 14(c)-14(e). The scale factor in Figures 14(d) 
and 14(e) is four times larger than in Figures 14(a)-14(c). The pair vortex flow pattern, shown in 
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Figure 13. Velocity vector plots at an equivalent crank angle B=W" for the case with a curvedduct intake port 

Figure 14(d), strongly resembles the one observed e~perimentally.~~ It is interesting to point out 
that a completely different form of the swirling flows induced by the curved-duct intake port has 
been created when comparing with a plane-symmetrical swirl flow induced by a straight duct. It 
should also be noted that the flow structures during the exhaust stroke process produced by the 
curved-duct and the straight-duct exhaust port are very similar, as seen in Figure 15 and Figure 9, 
respectively. 
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Figure 14. Velocity vector plots at an equivalent crank angle 8= 180" for the case with a curvedduct intake port 
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r- --Y 

(.) Y=-0.15 (b) x=O 

Figure 15. Velocity vector plots at an equivalent crank angle 0=270" for the case with a curved-duct exhaust port 

6. CONCLUDING REMARKS 

The flow field in three-dimensional configurations of IC engines, where both the intake/exhaust 
port systems and the combustion chamber are simultaneously considered, has been investigated. 
The use of a new methodology combining the overlapping-grid technique with the multigrid 
method and the use of a time-independent grid system for the moving boundary in the engine 
problem are emphasized. The current overlapping-grid technique has enhanced flexibility and 
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capability in dealing with three-dimensional multicomponent time-dependent configurations. 
The multigrid method is incorporated into the overlapping-grid technique to allow the efficient 
solution of the system of PDE describing the flow. The main advantage of our overlapping-grid 
system is that it allows the treatment of complex engine problems without the need for grid 
regeneration. The MG scheme is mandatory for the overlapping-grid system to compensate for 
the additional reduction of computational speed due to the information exchange among the 
different grids. The numerical results demonstrate that the current scheme is easier and more 
efficient in handling the complex problem with multicomponent geometries than with the 
conventional single-grid scheme. The engine flow patterns from the full geometry calculation with 
the present method are essentially identical to those found experimentally. Currently we incor- 
porate a (k--E) turbulence model into the scheme to study more realistic turbulent flow phenom- 
ena in the model IC engine. In addition, a local mesh refinement scheme is introduced at the 
regions where locally higher resolution is needed, such as at an area around a moving valve. 
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